2,279 research outputs found

    Measuring pH variability using an experimental sensor on an underwater glider

    Get PDF
    Autonomous underwater gliders offer the capability of measuring oceanic parameters continuously at high resolution in both vertical and horizontal planes, with timescales that can extend to many months. An experimental ion sensitive field effect transistor (ISFET) sensor measuring pH on the total scale was attached to a glider during the REP14 – MED experiment in June 2014 in the northwestern Mediterranean Sea. During the deployment, pH was sampled at depths of up to 1000 m, along an 80 km transect over a period of 12 days. Water samples were collected from a nearby ship and analysed for dissolved inorganic carbon concentration and total alkalinity to derive pH for validating the ISFET measurements. The vertical resolution of the pH sensor was good (1 to 2 m), but stability was poor, and the sensor drifted in a non-monotonous fashion. In order to remove the sensor drift, a time-dependent, depth-invariant offset was applied throughout the water column for each dive, reducing the spread of the data by approximately two thirds. Furthermore, the ISFET sensor required temperature and pressure-based corrections, which were achieved using linear regression. Correcting for this decreased the apparent sensor pH variability by a further 13 to 31 %. Sunlight caused an apparent sensor pH decrease of up to 0.1 in surface waters around local noon, highlighting the importance of shielding the sensor away from light in future deployments. The corrected pH from the ISFET sensor is presented along with potential temperature, salinity, potential density anomalies (σθ), and dissolved oxygen concentrations (c(O2)) measured by the glider, providing insights into physical and biogeochemical variability in this region. pH maxima were identified at the depth of the summer chlorophyll maximum, where high c(O2) values were also found. Longitudinal pH variations at depth (σθ > 28.8 kg m−3) highlighted variability of water masses in this region. Higher pH was observed where salinity was > 38.65, and lower pH was found where salinity ranged between 38.3 and 38.65. It seemed that the higher pH was associated with saltier Levantine Intermediate Water. Furthermore, shoaling isopycnals closer to shore coinciding with low pH, high salinity, low c(O2) waters may be indicative of upwelling

    Experiences of workers with post-COVID-19 symptoms can signpost suitable workplace accommodations

    Get PDF
    The prevalence and multi-system nature of post-COVID-19 symptoms warrants clearer understanding of their work ability implications within the working age population. An exploratory survey was undertaken to provide empirical evidence of the work-relevant experiences of workers recovering from COVID-19. A bespoke online survey based on a biopsychosocial framework ran between December 2020 and February 2021. It collected quantitative ratings of work ability and return-to-work status, qualitative responses about return-to-work experiences, obstacles and recommendations, along with views on employer benefits for making accommodations. A sample of 145 UK workers recovering from COVID-19 was recruited via social media, professional networks and industry contacts. Qualitative data was subject to thematic analysis. Participants were mainly from health/social care (50%) and educational settings (14%). Findings – Just over 90% indicated that they had experienced at least some post-COVID-19 symptoms, notably fatigue and cognitive effects. For 55%, symptoms lasted longer than six months. Only 15% had managed a full return-to-work. Of the 88 who provided workability ratings, just 13 and 18% respectively rated their physical and mental workability as good or very good. Difficulties in resuming work were attributed to symptom unpredictability, their interaction with job demands, managing symptoms and demands in parallel, unhelpful attitudes and expectations. Manager and peer support was reported as variable. Workplace health management characterised by flexible long-term collaborative return-to-work planning, supported bymoreCOVID-centric absence policies and organisational cultures, appear pivotal for sustaining the return-to-work of the large segments of the global workforce affected by post-COVID-19 symptoms

    Beyond the veil: Inner horizon instability and holography

    Full text link
    We show that scalar perturbations of the eternal, rotating BTZ black hole should lead to an instability of the inner (Cauchy) horizon, preserving strong cosmic censorship. Because of backscattering from the geometry, plane wave modes have a divergent stress tensor at the event horizon, but suitable wavepackets avoid this difficulty, and are dominated at late times by quasinormal behavior. The wavepackets have cuts in the complexified coordinate plane that are controlled by requirements of continuity, single-valuedness and positive energy. Due to a focusing effect, regular wavepackets nevertheless have a divergent stress-energy at the inner horizon, signaling an instability. This instability, which is localized behind the event horizon, is detected holographically as a breakdown in the semiclassical computation of dual CFT expectation values in which the analytic behavior of wavepackets in the complexified coordinate plane plays an integral role. In the dual field theory, this is interpreted as an encoding of physics behind the horizon in the entanglement between otherwise independent CFTs.Comment: 40 pages, LaTeX, 3 eps figures, v2: references adde

    Thermodynamics of Large AdS Black Holes

    Full text link
    We consider leading order quantum corrections to the geometry of large AdS black holes in a spherical reduction of four-dimensional Einstein gravity with negative cosmological constant. The Hawking temperature grows without bound with increasing black hole mass, yet the semiclassical back-reaction on the geometry is relatively mild, indicating that observers in free fall outside a large AdS black hole never see thermal radiation at the Hawking temperature. The positive specific heat of large AdS black holes is a statement about the dual gauge theory rather than an observable property on the gravity side. Implications for string thermodynamics with an AdS infrared regulator are briefly discussed.Comment: 17 pages, 1 figure, v2. added reference

    Gravity and Nonequilibrium Thermodynamics of Classical Matter

    Full text link
    Renewed interest in deriving gravity (more precisely, the Einstein equations) from thermodynamics considerations [1, 2] is stirred up by a recent proposal that 'gravity is an entropic force' [3] (see also [4]). Even though I find the arguments justifying such a claim in this latest proposal rather ad hoc and simplistic compared to the original one I would unreservedly support the call to explore deeper the relation between gravity and thermodynamics, this having the same spirit as my long-held view that general relativity is the hydrodynamic limit [5, 6] of some underlying theories for the microscopic structure of spacetime - all these proposals, together with that of [7, 8], attest to the emergent nature of gravity [9]. In this first paper of two we set the modest goal of studying the nonequilibrium thermodynamics of classical matter only, bringing afore some interesting prior results, without invoking any quantum considerations such as Bekenstein-Hawking entropy, holography or Unruh effect. This is for the sake of understanding the nonequilibrium nature of classical gravity which is at the root of many salient features of black hole physics. One important property of gravitational systems, from self-gravitating gas to black holes, is their negative heat capacity, which is the source of many out-of-the ordinary dynamical and thermodynamic features such as the non-existence in isolated systems of thermodynamically stable configurations, which actually provides the condition for gravitational stability. A related property is that, being systems with long range interaction, they are nonextensive and relax extremely slowly towards equilibrium. Here we explore how much of the known features of black hole thermodynamics can be derived from this classical nonequilibrium perspective. A sequel paper will address gravity and nonequilibrium thermodynamics of quantum fields [10].Comment: 25 pages essay. Invited Talk at Mariofest, March 2010, Rosario, Argentina. Festschrift to appear as an issue of IJMP

    Removing Singularities

    Get PDF
    Big bang/crunch curvature singularities in exact CFT string backgrounds can be removed by turning on gauge fields. This is described within a family of {SL(2)xSU(2)xU(1)_x}/{U(1)xU(1)} quotient CFTs. Uncharged incoming wavefunctions from the ``whiskers'' of the extended universe can be fully reflected if and only if a big bang/crunch curvature singularity, from which they are scattered, exists. Extended BTZ-like singularities remain as long as U(1)_x is compact.Comment: 21 pages, harvma

    Mesh inlay, mesh kit or native tissue repair for women having repeat anterior or posterior prolapse surgery: randomised controlled trial (PROSPECT)

    Get PDF
    Funding The project was funded by the National Institute for Health Research Health Technology Assessment Programme (Project Number 07/60/18). The Health Services Research Unit and the Health Economics Research Unit are funded by the Chief Scientist Office of the Scottish Government Health and Social Care Directorates. Acknowledgements The authors wish to thank the women who participated in the PROSPECT study. We also thank Margaret MacNeil for her secretarial support and data management; Dawn McRae and Lynda Constable for their trial management support; the programming team in CHaRT, led by Gladys McPherson; members of the Project Management Group for their ongoing advice and support of the study; and the staff at the recruitment sites who facilitated the recruitment, treatment and follow up of study participants.Peer reviewedPublisher PD
    corecore